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Abstract

A spatiotemporal stochastic simulation approach for constructing maps of daily precipitation at regional scales in a hindcast

mode is proposed in this paper. Parametric temporal trend models of precipitation are first established at the available rain

gauges. Temporal trend model parameters are then regionalized in space accounting for their spatial auto- and cross-correlation,

as well as for their relationships with auxiliary spatial information such as terrain elevation. The resulting residual values at the

rain gauges are modeled as a realization of a stationary spatiotemporal process. Sequential simulation is then used to generate

alternative synthetic realizations of daily precipitation fields, which reproduce: (i) the rain gauge measurements, and (ii) their

histogram and a model for their spatiotemporal correlation over the entire study region and time period of interest. In addition, a

post-processing transformation allows reproduction of the rainfall histogram at particular dates, while preserving the observed

rain gauge data.

A case study illustrates the applicability of the proposed methodology using daily precipitation measurements recorded at 77

rain gauges in the northern California coastal region from Nov 1, 1981 to Jan 31, 1982. Conditional stochastic simulation in

space and time is performed for generating a 30-member ensemble of daily precipitation fields on a 300 £ 360 grid of cell size

1 km2 for the above time period. It is shown that simulated precipitation fields reproduce the spatiotemporal characteristics of

the rain gauge measurements, thus providing realistic inputs of precipitation forcing for hydrologic impact assessment studies.
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1. Introduction

Regional scale precipitation predictions constitute

one of the most important input parameters for

hydrologic impact assessment studies; the improve-

ment of such predictions poses a very important

research theme in hydrology (Entekhabi et al., 1999).

A means for enhancing the accuracy of regional

scale precipitation predictions is provided by limited

area models (LAMs) (Giorgi and Mearns, 1991;

Kim and Soong, 1996; Miller and Kim, 1996;

Journal of Hydrology 297 (2004) 236–255

www.elsevier.com/locate/jhydrol

0022-1694/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.jhydrol.2004.04.022

* Corresponding author.

E-mail address: phaedon@geog.ucsb.edu (P.C. Kyriakidis).

http://www.elsevier.com/locate/jhydrol


Kim et al., 1998). Dynamical downscaling using

LAMs yields precipitation predictions, which are

physically and dynamically consistent with other

atmospheric variables produced in the downscaling

procedure. Dynamical downscaling, however, is

computationally expensive and not error-free due to

limited spatial resolution and model parameteriza-

tions. Stochastic characterization of rainfall fields

based on rain gauge data and ancillary information,

e.g. terrain elevation, still provides one of the basic

tools for constructing rainfall maps at regional scales

(Bras and Rodrı́guez-Iturbe, 1985; Seo et al., 2000;

Kyriakidis et al., 2001b), even though physical and

dynamic consistency among downscaled variables is

not guaranteed.

Time domain approaches for modeling daily

precipitation are often based on time series models,

e.g. multivariate autoregressive (AR) models (Bras

and Rodrı́guez-Iturbe, 1985), or generalized linear

models (Chandler and Wheater, 2002). Such

approaches exploit the typically better informed

time domain, but are limited to predictions only at

rain gauge locations (Wilks, 1998; von Storch and

Zwiers, 1999). This limitation hinders the all-

important task of spatiotemporal mapping. Recently,

time series approaches (in the form of weather

generators) have been generalized to a continuous

spatial domain and maps of precipitation levels are

constructed at any arbitrary location via interpolation

of time series model parameters (Hutchinson, 1995;

Johnson et al., 2000).

In this paper, a framework for stochastic spatio-

temporal simulation of daily precipitation in a

hindcast mode is developed following Kyriakidis

and Journel (2001). Observed precipitation levels in

space and time are modeled as a joint realization of a

collection of space-indexed time series, one for each

spatial location. Time series model parameters are

spatially varying, thus capturing space–time inter-

actions. The residuals from these local trend models

are regarded as a realization of a stationary spatio-

temporal process. Stochastic simulation, i.e. the

procedure of generating alternative precipitation

realizations (synthetic fields) over the space–time

domain of interest (Deutsch and Journel, 1998), is

employed for ensemble prediction. Realizations of

the residual process are generated via conditional

stochastic simulation and added to the estimated trend

component to produce alternative conditional realiz-

ations of the spatiotemporal distribution of daily

precipitation. The simulated daily precipitation fields

reproduce a data-based histogram and spatiotemporal

covariance model, and identify the measured precipi-

tation values at the rain gauges (conditional simu-

lation); this latter characteristic distinguishes this

approach from weather generators which are essen-

tially unconditional stochastic simulations. The

resulting synthetic precipitation fields can be used in

a Monte Carlo framework for risk analysis studies in

hydrologic impact assessment investigations (Bras

and Rodrı́guez-Iturbe, 1985; Kyriakidis et al., 2001a).

The proposed methodology is developed in

Section 2 in the following sequence: construction of

parametric temporal trend models at all rain gauges

(Section 2.1), regionalization of resulting parameters

in space (Section 2.2), and simulation of the

spatiotemporal precipitation field (Section 2.3). In

Section 3, a case study is presented using a daily

precipitation data set near the northern California

coastal region from Nov 1, 1981 to Jan 31, 1982. Last,

a brief discussion regarding potential improvements

and future work is given in Section 4.

2. Spatial time series

Let {ZuðtÞ; t [ T} denote a space-indexed random

process (a time series model), where T denotes the

time span of interest, and u ¼ ðu1; u2Þ denotes the 2D

coordinate vector (e.g. longitude and latitude) of an

arbitrary location in the study domain D: The set of all

possible precipitation profiles in the study region for

the particular study period is modeled as a collection

of spatially correlated time series models, one for each

location u :

{ZuðtÞ; t [ T}; u [ D ð1Þ

where the subscript u emphasizes the spatial time

series viewpoint adopted in this work.

The random variable ZuðtÞ modeling the uncer-

tainty about the unknown precipitation value ZuðtÞ at

the t-th time instant at a location u is decomposed into:

ZuðtÞ ¼ muðtÞ þ RuðtÞ; t [ T ð2Þ

where muðtÞ is a deterministic space–time component

characterizing some ‘average’ smooth variability of
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the spatiotemporal process, and RuðtÞ is stationary,

zero mean, residual component modeling higher

frequency fluctuations around that trend in both

space and time. Notation-wise, E{ZuðtÞ} ¼ muðtÞ and

E{RuðtÞ} ¼ 0; i.e. the trend component is the expected

value of the process, and Cov{muðtÞ; RuðtÞ} ¼ 0; i.e.

the trend and residual components are independent

since the former is considered deterministic.

The trend component typically characterizes long-

term temporal patterns, for example precipitation

variability attributed to regional climatic factors.

Other patterns of variability, e.g. those linked to

local weather conditions, are typically accounted for

by the stochastic residual component. It should be

stressed that the dichotomy of Eq. (2) is a (subjective)

modeling decision: there is no ‘true’ temporal trend

component, since there are no trend data. Two

researchers, for example, might disagree on the

particular climatic factors that give rise to long-term

temporal patterns and should thus be linked to the

trend component. The resulting residual component is

therefore a collective term for all components of

variability that are not included in the trend model

(Thiébaux, 1997).

At regional scales, the temporal characteristics of

precipitation profiles are not stationary in space; this

entails, for example, that the corresponding temporal

trend components {muðtÞ; t [ T} and {mu0 ðtÞ; t [ T}

at two different locations u and u0 will differ according

to the climatic conditions prevailing at these

locations. Precipitation characteristics at a location u

near, say, the ocean are expected to be different from

those at a location u0 in an orographically isolated

area. It is therefore critical to consider spatially non-

stationary patterns of temporal variability in the

modeling procedure, as well as to account for the

influence of ancillary information on the spatial

distribution of these characteristics.

To this end, local parametric models for the

temporal trend of daily precipitation are first estab-

lished at the available rain gauges. The resulting

temporal trend model parameters are then regiona-

lized (interpolated) in space, accounting for: (i) their

relationships with auxiliary spatial variables, such as

terrain elevation and its interaction with large-scale

specific humidity derived from an assimilated data

product from the National Centers for Environmental

Prediction and the National Center for Atmospheric

Research (NCEP/NCAR reanalysis), see Kalnay et al.

(1996), and (ii) their spatial auto- and cross-corre-

lation via cokriging (Wackernagel, 1995).

2.1. Station-specific temporal trend models

Let za ¼ ½zaðtiÞ; i ¼ 1;…; Ta�
0 denote the ðTa £ 1Þ

vector of precipitation measurements at the a-th rain

gauge with coordinate vector ua; here Ta denotes

the number of available measurements (length of

precipitation profile) at location ua; and superscript 0

denotes transposition. The sample profile za at the

a-th monitoring station is regarded as a realization

of a random process {ZaðtiÞ; ti [ T}; and is

decomposed as:

za ¼ ma þ ra ð3Þ

where ma ¼ ½maðtiÞ; i ¼ 1;…;Ta�
0 denotes a ðTa £ 1)

vector comprising the temporal trend at location ua;

and ra ¼ ½raðtiÞ; i ¼ 1;…; Ta�
0 denotes a ðTa £ 1)

random vector comprising a realization of a zero

mean, stochastic residual component at the same

location.

The temporal trend component ma at the a-th rain

gauge is modeled as a weighted linear combination of

ðK þ 1Þ elementary profiles (signals):

ma ¼ Fba or equivalently

maðtiÞ ¼
XK
k¼0

bkðuaÞfkðtiÞ; i ¼ 1;…;Ta ð4Þ

where F ¼ ½fk; k ¼ 1;…;K� is a ðTa £ ðK þ 1ÞÞ tem-

poral design matrix whose k-th column comprises the

k-th elementary temporal profile fk ¼ ½fkðtiÞ; i ¼

1;…;Ta�
0; and ba ¼ ½bkðuaÞ; k ¼ 0;…;K�0 is a

ðK þ 1Þ column vector of coefficients (intensities)

associated with these profiles. Note that, by convention,

f0 ¼ ½1;…; 1|ffl{zffl} �0
Ta

;

i.e. the 0-th elementary profile is the Ta £ 1 unit

vector.

Each elementary temporal profile fk contributing

to the trend component, is independent of the spatial

location ua and should ideally have a physical

interpretation pertinent to the entire study region.

Such profiles could be parametric functions of time

linked to stationary (in space) climatic signals at
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regional scales. Periodicities, for example, could be

handled via sinusoidal forms of elementary profiles

(thus leading to a Fourier series decomposition).

Alternatively, these elementary profiles could be

identified to a set of orthogonal factors derived via

empirical orthogonal function (EOF) analysis of the

rain gauge precipitation profiles (Rao and Hsieh,

1991; Hisdal and Tveito, 1992; Sauquet et al., 2000).

A simpler approach, which is adopted in the case

study of this paper, amounts to considering only two

elementary profiles: f0 and f1; with f1 taken as the

spatial average of all sample precipitation profiles

available in the study region. In all the cases

listed above, the temporal trend component is a

consequence of subjective decisions regarding the

number, and shape (parametric or not) of the

elementary profiles comprising the columns of

matrix F in Eq. (4).

It should be noted here that, when the elementary

profiles are derived solely from sample data, the

resulting trend and residual components can only be

used in a hindcast mode. Forecasting requires that

these elementary profiles be first projected in the

future, or that they be linked to other variables for

which forecasts can be readily obtained. In these

cases, one would also be looking at time-varying

temporal trend coefficients, which should also be

projected in the future. Such a forecast modeling

approach is not addressed in this work.

Irrespective of their definition, these common

regional signals are modulated locally, via the

coefficient vector ba; to define temporal trend

components that are different from one rain gauge to

another. This vector ba of temporal trend coefficients

can be determined at each rain gauge location ua;

independently from one location to another, using

multiple (linear or non-linear) regression. In this

work, the vector ba at any rain gauge location ua is

computed via ordinary least squares (OLS) as (Searle,

1971):

ba ¼ ðF0FÞ21F0za ð5Þ

Once the rain gauge specific vector ba of

temporal trend coefficients is computed at each

rain gauge location ua; the temporal trend

{maðtiÞ; ti [ Ta} at that location is given by

Eq. (4), and the corresponding residual profile is

computed as:

ra ¼ za 2 Fba; or equivalently

raðtiÞ ¼ zaðtiÞ2
XK
k¼0

bkðuaÞfkðtiÞ; i ¼ 1;…;Ta ð6Þ

The temporal trend b-coefficients are essentially

defined via the algorithm adopted for their

computation, and they are subsequently treated as

precise data. These rain-gauge derived coefficients

are used to estimate (interpolate) the vector bu of

unknown coefficients at any ungauged location u;

accounting for relevant ancillary spatial information

such as terrain elevation (Sauquet et al., 2000;

Bierkens et al., 2001). The term deterministic is

used for these temporal trend coefficients, because

their uncertainty at the rain gauge locations, as

well as their uncertainty at ungauged locations due

to their spatial interpolation, is not accounted for

in this work. In what follows, we describe a

method to account for the interaction (correlation)

between these coefficients during their spatial

interpolation.

2.2. Regionalizing temporal trend coefficients

Even if temporal trend models are established

independently at each rain gauge, the resulting

temporal trend b-coefficients are auto- and cross-

correlated (covary) in space since they are derived

from the same process z-data, themselves correlated in

space and time. Such b-coefficients are not pair-wise

cross-correlated at the zero spatial lag, if one uses

EOF analysis of the n sample precipitation profiles to

arrive at the temporal trend components (Rao and

Hsieh, 1991). The spatial orthogonality of such EOF-

derived coefficients, however, is not guaranteed for

non-zero spatial lags (Goovaerts, 1993). Conse-

quently, a more general approach consists of account-

ing for spatiotemporal interactions between the

ðK þ 1Þ temporal trend components via the spatial

(cross) correlation of the local trend b-coefficients, as

well as for any relationship with pertinent spatial

variables, such as terrain elevation and/or specific

humidity.

The proposed procedure of regionalizing (inter-

polating in space) the temporal trend b-coefficients
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proceeds in the following steps:

1. Spatial regression of the temporal trend b-coeffi-

cients derived at the n rain gauges on collocated

values of auxiliary variables, such as terrain

elevation or lower-atmosphere variables derived,

say, from NCEP/NCAR reanalysis. This step

yields a set of ðK þ 1Þ spatial regression residual

values at any rain gauge location ua; as well as a

set of ðK þ 1Þ estimated b-coefficients at any

ungauged location u: In this work, samples of the

auxiliary variables are assumed representative of

an area equal to the cell size of the prediction/si-

mulation grid, and their support (scale) differences

with the rain gauge data are not accounted for.

2. Cokriging of the rain gauge residuals from

the above spatial regression to compute a set of

ðK þ 1Þ predicted residuals at any ungauged

location u: This step accounts for the spatial

auto- and cross-correlation of the spatial regression

residuals obtained at the rain gauges.

3. Reconstruction of the ðK þ 1Þ sets of b-coefficients

at any ungauged location u; by adding the

estimated b-coefficients obtained from spatial

regression (step 1), and the predicted residuals

obtained from cokriging (step 2). This step leads to

an estimated trend component at any ungauged

location u via a modified version of Eq. (4), see

hereafter.

More precisely, the n values of the k-th coefficient

obtained at the n rain gauge locations are expressed

as:

bðkÞ ¼ Gndk þ ek ð7Þ

where bðkÞ ¼ ½bkðuaÞ; a ¼ 1;…; n�0 is a ðn £ 1Þ col-

umn vector containing the values of the k-th

coefficient at the n rain gauges, Gn ¼ ½gl; l ¼

0;…; L� is a ðn £ ðL þ 1ÞÞ spatial design matrix

whose l-th column contains n values of the l-th

auxiliary spatial variable (e.g. terrain elevation)

gl ¼ ½glðuaÞ; a ¼ 1;…; n�0 at the n rain gauges,

dk ¼ ½dkðuaÞ; k ¼ 0;…;K�0 is a ðL þ 1Þ column

vector of spatial regression coefficients, and ek ¼ ½rk

ðuaÞ; a ¼ 1;…; n�0 is a ðn £ 1Þ column vector of

spatial regression residuals. Note that bðkÞ should not

be confused with ba; the latter denoting the ðK þ 1Þ

column vector of temporal trend coefficients at the

a-th rain gauge.

In this work, the vector ½bðkÞ�p of spatial regression

predictions for the k-th temporal trend coefficient is

computed via OLS as (Searle, 1971):

½bðkÞ�p ¼ Gndk ¼ Gn½ðG
0
nGnÞ

21G0
nbðkÞ� ð8Þ

The resulting ðn £ 1Þ vector ek of spatial regression

residuals (at the n rain gauges) for the k-th temporal

trend coefficient is then computed as:

ek ¼ ½bðkÞ�p 2 Gndk ð9Þ

these residuals have, by construction, a zero mean.

If prediction is performed at P prediction locations,

the ðP £ 1Þ vector ½bðkÞ
P �p of spatial regression predic-

tions for the k-th temporal trend coefficient is

computed as:

½bðkÞ
P �p ¼ GPdk ¼ GP½ðG

0
nGnÞ

21G0
nbðkÞ� ð10Þ

where GP is a ðP £ ðL þ 1ÞÞ spatial design matrix

whose l-th column contains P values of the l-th

auxiliary spatial variable (e.g. terrain elevation)

gl ¼ ½glðupÞ; p ¼ 1;…;P�0 at the P prediction

locations. The predicted value of the k-th unknown

temporal trend coefficient bkðuÞ at an arbitrary

ungauged location u derived via the above spatial

regression procedure is denoted as bp
kðuÞ:

In the general case, the spatial regression residuals

computed from Eq. (8) exhibit spatial auto- and

cross-correlation. Consequently, their spatial

prediction calls for inferring the cross-covariance

matrix of the vector random function (RF) {EkðuÞ;

u [ D}; k ¼ 0;…;K; modeling the joint spatial

correlation of these residuals. The geostatistical

algorithm of cokriging is adopted for this joint

prediction task (Wackernagel, 1995). It should be

stressed here that (co)kriging can be viewed as a

deterministic interpolator, given the realization of the

sample data, and has close connections with

interpolation using splines and radial basis functions

(Wackernagel, 1995). Consequently, the interpolated

temporal trend b-coefficients are hereafter treated as

deterministic, thus entailing that the resulting

temporal trend component is also deterministic.

The case of random temporal trend b-coefficients,

although tractable, is not addressed in this paper.
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The simple cokriging (SCK) estimate ep0ðuÞ for

the unknown regression residual for the b0-coefficient

e0ðuÞ ¼ b0ðuÞ2 bp
0ðuÞ; for example, at any location

u [ D is expressed as:

ep0ðuÞ ¼
XK
k¼0

w0
0kek ð11Þ

where w0k ¼ ½w0kðuaÞ; a ¼ 1;…; n�0 denotes the n £ 1

vector of cokriging weights assigned to the known

regression residuals of vector ek for prediction of the

unknown regression residual e0ðuÞ at location u; and

obtained per solution of the SCK system of equations:

C00 · · · C0K

..

. . .
. ..

.

CK0 · · · CKK

2
6664

3
7775

w00

..

.

w0K

2
6664

3
7775 ¼

c00

..

.

c0K

2
6664

3
7775 ð12Þ

where Ck0k denotes the n £ n matrix of auto- or cross-

covariance values CEk0Ek
ðub 2 uaÞ between any pair

of regression residuals ek0 ðubÞ and ekðuaÞ; and c0k

denotes the ðn £ 1Þ column vector of auto- or cross-

covariance values CE0Ek
ðu 2 uaÞ between any

unknown regression residual e0ðuÞ and any residual

value ekðuaÞ: Similar equations can be written for

the spatial prediction of residuals related to other

bk-coefficients, i.e. for k – 0; see Goovaerts (1997)

for further details.

The final combined estimate of the unknown k-th

temporal trend coefficient bkðuÞ at any location u [ D

is obtained as:

bpp
k ðuÞ ¼ bp

kðuÞ þ epkðuÞ ð13Þ

and it accounts for: (i) the relationship of the temporal

trend coefficient with auxiliary spatial variables, via

the spatial regression-based term bp
kðuÞ; and (ii) the

spatial auto- and cross-correlation of the resulting

residuals, via the cokriging-based term epkðuÞ:

Since cokriging is an exact interpolator, the

cokriging-predicted spatial regression residuals repro-

duce the original spatial regression residuals at the

rain gauges, i.e. epkðuaÞ ¼ ekðuaÞ; ;k;a: This entails

that the original temporal trend coefficients are

also reproduced at the rain gauges, i.e. bpp
k ðuaÞ ¼

bp
kðuaÞ þ epkðuaÞ ¼ bkðuaÞ; ;k;a: In addition, the final

estimated temporal trend at any rain gauge ua for any

time instant t reproduces the original temporal trend

value for that instant, i.e. mp
aðtÞ ¼ maðtÞ; ;a; t:

Availability of a set of ðK þ 1Þ such estimated

coefficient values {bpp
k ðuÞ;u [ D}; k ¼ 0;…;K;

yields an estimate {mp
uðtÞ; u [ D; t [ T} of the

temporal trend component over the space time

domain, as:

mp
uðtÞ ¼

XK
k¼0

bpp
k ðuÞfkðtÞ; u [ D; t [ T ð14Þ

2.3. Stochastic simulation of space–time precipitation

Once the spatiotemporal trend component

{mp
uðtÞ; t [ T} is estimated at any ungauged location

u; stochastic simulation of daily precipitation at any

time instant t and at that location u amounts to

simulating realizations of the spatiotemporal residual

component {RuðtÞ; t [ T} at that location and time

instant, and combining them with the previously

estimated trend component. In what follows, the

collection of all (unknown) time profiles over the

study region is denoted as {mðu; tÞ; u [ D; t [ T}

for the spatiotemporal trend component, and {Rðu; tÞ;

u [ D; t [ T} for the spatiotemporal residual

component. This latter component is modeled as a

stationary (in space and time) zero mean process.

Since any temporal and spatial non-stationarity is

accounted for by the spatiotemporal trend component

{mðu; tÞ; u [ D; t [ T}; the assumption of a station-

ary space–time residual component is more realistic.

In the most frequently encountered case of non-

Gaussian precipitation data, stationarity applies to

Gaussian-transformed residuals (see the description of

the simulation method that follows).

Stochastic characterization of the residual com-

ponent {Rðu; tÞ; u [ D; t [ T} calls for modeling

the spatiotemporal covariance of the (possibly

Gaussian-transformed) r-residuals of Eq. (6):

Cov{Rðu; tÞ;Rðu0
; t0Þ} ¼ E{Rðu; tÞRðu0

; t0Þ}

¼ CRðu 2 u0
; t 2 t0Þ ¼ CRðh; tÞ ð15Þ

where h ¼ u 2 u0 denotes a spatial lag vector, and

t ¼ t 2 t0 denotes a temporal lag. When t ¼ 0; the

covariance CRðh; 0Þ models the spatial correlation of

the residuals, which is the same for all time instants.

When h ¼ 0; the covariance CRð0; tÞ models the

temporal correlation of the residuals, which is
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the same from one location to another. Scale

differences between the space and time domains are

accounted for via a geometric anisotropy using a

generalized distance metric:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh=a1Þ

2 þ ðt=a2Þ
2

q
;

where a1 and a2 denote (unequal) spatial and temporal

correlation length parameters, see Section 3.3 and

Kyriakidis and Journel (1999) for details.

In this paper, sequential Gaussian simulation

(Deutsch and Journel, 1998) is used to generate a

S-member ensemble of spatiotemporal precipitation

realizations {zðsÞðu; tÞ; u [ D; t [ T}; s ¼ 1;…; S;

here superscript s denotes the s-th member of the

ensemble. Spatiotemporal sequential simulation is

similar to simulation from an AR process, whereby

a random visiting sequence of locations (in space–

time) replaces the natural ordering of time driving the

simulation in the case of AR processes.

In sequential simulation, the use of kriging and

an invertible quantile transformation procedure

guarantee that the original rain gauge data are

reproduced at their locations (in space–time) in all

simulated realizations. Any missing precipitation

values (due to missing observations) at the rain

gauges are in-filled via simulation. It should be

noted here, that a sole reproduction of the rain

gauge data at their locations does not suffice to

reproduce the rain precipitation histogram, because

the simulated values are many more than the

original rain gauge data (since the entire space–

time domain is in-filled with such simulated values).

The quantile transformation procedure adopted in

sequential simulation, however, ensures reproduc-

tion (within statistical fluctuations) of the rain gauge

precipitation distribution by each simulated

realization.

Sequential simulation proceeds in the following

steps (for more details, the reader is referred to

Deutsch and Journel (1998)):

1. The original rain gauge z-data are transformed to a

new set of values that follows a standard Gaussian

distribution, using a non-linear, rank-preserving,

and invertible quantile transformation procedure.

More precisely, any original rain gauge datum

zðua; tiÞ is transformed to a standard Gaussian

deviate zGðua; tiÞ as: zGðua; tiÞ ¼ G21½FZ½z

ðua; tiÞ��; where FZ½·� denotes the cumulative

distribution function (cdf) of the rain gauge data,

and G21½·� denotes the inverse standard Gaussian

cdf. The reader should not confuse FZ and G with

the temporal design matrix F of Eq. (4) and the

spatial design matrix G of Eq. (7), respectively.

Any estimated trend value mpðua; tiÞ is trans-

formed to a Gaussian deviate mp
Gðua; tiÞ according

to the cdf of the rain gauge data: mp
Gðua; tiÞ ¼

G21½FZ½m
pðua; tiÞ��: Note that the transformed

mp
G-values do not follow a standard Gaussian

distribution; they would, if in the above equation

the cdf of the rain gauge data FZ½·� was replaced by

the cdf of the estimated trend values Fmp ½·�: In

particular, the variance of the mp
G-values is not

one, because the trend component quantifies

some ‘average’ spatiotemporal variability of the

precipitation process. The Gaussian rG-residuals

at the rain gauges are then obtained as:

rGðua; tiÞ ¼ zGðua; tiÞ2 mp
Gðua; tiÞ: It is this set of

rG-data that are assumed stationary, and whose

covariance model is specified as CRG
ðh; tÞ; in the

Gaussian case where no transformation is necess-

ary, CRG
ðh; tÞ ¼ CRðh; tÞ; with CRðh; tÞ given in

Eq. (15).

2. A random path is defined for visiting once all

simulation grid nodes (in space and time). If one

wishes to condition simulated values at time instant

ti only to previously simulated values at time

instants before ti; then the visiting sequence should

be such that simulation grid nodes at time ti are

only visited (at random) after any node prior to ti;

and before any node after ti: This approach was not

adopted in this work, because the objective here is

simulation in a hindcast mode. Instead, the

simulated value at a node at time ti was conditioned

to observed values before and after ti:

3. At any simulation node ðu; tiÞ visited at random

along this path:

(a) Kriging is performed to estimate the mean

rpGðu; tÞ and standard deviation sp
RG
ðu; tÞ of

the local (node-specific) residual Gaussian

distribution, conditional to the rG-data and

any previously simulated rG-values at grid

nodes visited before ðu; tÞ: The covariance

model CRG
ðh; tÞ is used in this kriging step.

At the first node of this random path,
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there are no previously simulated rG-values;

the only conditioning information available

consists of the rain gauge rG-data. The

corresponding Gaussian transformed trend

value mp
Gðu; tÞ at this node is added to the

mean rpGðu; tÞ of this distribution, which now

becomes the local Gaussian distribution of

zG-values with mean mp
Gðu; tÞ þ rpGðu; tÞ and

standard deviation sp
RG
ðu; tÞ:

(b) A simulated Gaussian deviate zðsÞG ðu; tÞ is

generated at this node from the above

distribution using Monte Carlo drawing,

and it is added to the conditioning data set

(of rain gauge rG-data, and previously

simulated rG-values). This is equivalent to

first simulating a residual value rðsÞG ðu; tÞ

from the local Gaussian distribution

with mean rpGðu; tÞ and standard deviation

sp
RG
ðu; tÞ; and then adding to this simulated

value the corresponding estimated trend

component mp
Gðu; tÞ:

4. All simulation grid nodes along the random path

are visited sequentially, and the above two steps

are repeated at each node.

5. The set of all simulated Gaussian zG-values is then

back-transformed to a set of z-values with a non-

Gaussian distribution (that of the original rain

gauge z-data). In particular, a simulated precipi-

tation value zðsÞðu; tÞ is obtained from the corre-

sponding simulated Gaussian deviate zðsÞG ðu; tÞ as:

zðsÞðu; tÞ ¼ F21
Z ½G½zðsÞG ðu; tÞ��; where F21

Z ½·� denotes

the sample inverse cdf and G½·� denotes the

standard Gaussian cdf. The set of backtransformed

simulated values constitutes the s-th precipitation

realization {zðsÞðu; tÞ; u [ D; t [ T}:

A new realization {zðs
0Þðu; tÞ; u[D; t[T} is gen-

erated by repeating all the above steps with a different

random path. The set of S alternative simulated

realizations {zðsÞðu; tÞ; u[D; t[T}; s¼1;…;S; pro-

vides a model of uncertainty for the unknown

precipitation levels in both space and time, which

can be used for hydrologic impact assessment studies

(Seo et al., 2000; Kyriakidis et al., 2001a).

Because in this work the temporal trend b-

coefficients (hence the spatiotemporal trend

component) are treated as deterministic, we do

not account for the uncertainty in the predicted

b-coefficients in the simulation procedure. Such

uncertainty stems from the temporal regression of

Eq. (4), the spatial regression of Eq. (8), and the

cokriging prediction of Eq. (11). Modifications of the

sequential simulation procedure described above can

be made to account for these extra uncertainty

sources, and will be reported in the near future. For

a more elaborate procedure, which accounts for the

uncertainty in the estimated trend component at

ungauged locations via simulation of the spatiotem-

poral trend component, the reader is referred to

Kyriakidis and Journel (2001).

3. Case study

The study domain is a 300 £ 360 km2 area of the

northern California coastal region, which is charac-

terized by complex terrain and significant spatial and

seasonal variation in precipitation. Annual precipi-

tation varies from 200 mm/year in the Central Valley

(east of the Coastal Range) to over 1300 mm/year in

the Santa Cruz Mountains (north of the Monterey

Bay). Precipitation in the region generally originates

from stratiform clouds due to orographic lifting of the

westerly flow over the western slope of the Coastal

Range. Occasionally, strong convection embedded

within the stratiform clouds generates intense local

precipitation.

The rainfall data set used in this study consists of 77

rain gauge precipitation measurements of daily rainfall

during the 92 days from Nov 1, 1981 to Jan 31, 1982.

The time average of precipitation for these 92 days at

each rain gauge is shown in Fig. 1A. The original daily

precipitation values constitute a subset of the Coop-

erative observer (COOP) and first-order precipitation

stations, obtained from the National Climate Data

Center (NCDC, 1995); for a detailed analysis of

California precipitation using this data set, the reader

is referred to Pandey et al. (1999). The proportion of

rain gauge data above the threshold of 0.25 mm

(indicating a wet day) over all 92 days is 0.39. Wet-day

precipitation amounts range from 0.25 to 291.38 mm,

with a mean of 14.98 mm and a median of 6.35 mm

indicating a positively skewed precipitation distri-

bution. The standard deviation and coefficient of

variation of the wet-day precipitation amounts is 23.88

and 1.59 mm, respectively, indicating a significant
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spatiotemporal variability. The objective of this study

is to generate ensemble predictions of precipitation on

a 300 £ 360 grid of cell size 1 km2 for the period Nov

1, 1981 to Jan 31, 1982, using all relevant information

available for this region.

Auxiliary spatial variables used in this study

include terrain elevation, and its interaction with

specific humidity derived from NCEP/NCAR reana-

lysis data. A smoothed version of a United States

Geological Survey (USGS) digital elevation model

was used in this study. The smoothing window of

13 £ 13 km2 was determined by maximizing the

correlation between time-averaged precipitation

(Fig. 1A) and collocated smoothed elevation; see

Kyriakidis et al. (2001b) for details. Time-averaged

specific humidity integrated over 850 2 1000 hPa

was derived by interpolation from the nine NCEP/

NCAR reanalysis nodes closest to the study domain,

and represents the availability of large-scale water

vapor in the lower atmosphere over the period of

interest. Areas where the product (interaction in

statistical terms) of the above two variables

(smoothed elevation and integrated specific humidity)

is high, correspond to places where both elevation

and moisture availability, hence likelihood of

precipitation, is high.

3.1. Parametric local temporal trend models

The first step in the proposed methodology is to

establish a set of local temporal trend models of

precipitation at each rain gauge, see Section 2.1. To

this effect, two elementary profiles are used as

temporal precipitation predictors at each rain gauge:

f0 ¼ ½f0ðtiÞ ¼ 1; i ¼ 1;…; 92�0; and

f1 ¼
1

n

Xn

a¼1

zðua; tiÞ; i ¼ 1;…; 92

" #0

;

see Eq. (4). In other words, the spatial average f1

of the precipitation profiles from the 77 rain gauges

(Fig. 1B) is used as the temporal precipitation

predictor at each rain gauge. By analogy to simple

linear regression, two temporal trend coefficients

are available at each rain gauge ua (see Fig. 2): an

intercept coefficient b0ðuaÞ associated with f0; and

a slope coefficient b1ðuaÞ associated with f1: Rain

gauges with near zero intercept and near unit slope

values (see the eastern part of the study domain

and the south Bay Area) indicate precipitation

profiles very similar to the spatially averaged

profile f1:

Fig. 1. Time-average of observed daily precipitation at 77 rain gauges during the period from Nov 1, 1981 to Jan 31, 1982 (A), and space-

average of precipitation profiles for the same 92 days (B); the cross indicates an ungaged location at which simulated precipitation profiles are

shown along with those observed at nearby stations #5 and #60 (see Fig. 10).
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A measure of how well the spatially averaged

precipitation profile f1 captures local variations at

the a-th rain gauge is the coefficient of determination

ðCDaÞ computed as:

CDa ¼

XTa

i¼1
½maðtiÞ2 �za�

2XTa

i¼1
½zaðtiÞ2 �za�

2

where �za denotes the time-averaged precipitation at

the a-th rain gauge (shown in Fig. 1A).

The spatial variability of these CD-values is shown

in Fig. 3A. The average CD-value is 0.58, with a

minimum of 0.09 and a maximum of 0.87 (Fig. 3B),

indicating that the proportion of temporal precipi-

tation variance accounted for by the spatially

averaged precipitation profile f1 changes significantly

from one rain gauge to another. Precipitation profiles

at rain gauges with high CD-values (located in the

northern part of the study area and in the Santa Cruz

mountains) can be adequately characterized by a

linear rescaling of the spatially averaged profile f1:

3.2. Spatiotemporal trend component

Once a set of local trend models is established at

each of the n ¼ 77 rain gauge locations, the task is to

estimate the spatiotemporal trend component of

precipitation mðu; tÞ; see Eq. (2), at any grid cell u

and for any day t: This task calls for the joint spatial

prediction of intercept b0 and slope b1 coefficients at

any location u within the study domain D: Joint spatial

prediction of intercept b0- and slope b1-coefficients is

enhanced by accounting for their relation with terrain

elevation and its interaction with specific humidity

derived from NCEP/NCAR reanalysis data (see

Section 2.2).

The rank transform of the window averaged

elevation is used as an auxiliary variable in the spatial

prediction of intercept b0-coefficients. Similarly, the

rank transform of the product (interaction) of specific

humidity with the smoothed terrain elevation is used

as an auxiliary variable in the spatial prediction of

slope b1-coefficients. The values of the above ranked

transformed predictors at the n ¼ 77 rain gauges,

together with the (77 £ 1) vector of ones form the

three columns of the design matrix Gn of Eq. (7). The

coefficients of determination for the regression of

intercept b0-coefficients (Fig. 2A) on collocated rank-

transformed smoothed elevation values and of slope

b1-coefficients (Fig. 2B) on rank-transformed humid-

ity–elevation interaction values are 0.3 and 0.4,

respectively, see Eq. (7). Both regression models are

statistically significant at the 95% level, but provide

marginal benefits for prediction purposes, when

Fig. 2. Coefficients, intercept (A) and slope (B), of local temporal trend models established at the 77 rain gauges.
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compared to the impact of the spatial autocorrelation

of the residual values themselves; see Goovaerts

(1997) for details regarding the effect of auxiliary

variables on cokriging predictions.

SCK was used for the joint spatial prediction of the

resulting regression residual e0- and e1-values, see

Section 2.2 and Eqs. (11) and (12). All auto- and

cross-variogram functions of these residuals (not

shown) were jointly modeled as isotropic using

the linear model of coregionalization (LMC), see

Wackernagel (1995) for details, and are:

gE0
ðlhlÞ ¼ 0:01½12 dlhl� þ 0:56 12 exp

23lhl2

202

 !" #

þ 0:80 12 exp
23lhl

80

� �� �

gE1
ðlhlÞ ¼ 0:01½12 dlhl� þ 0:07 12 exp

23lhl2

202

 !" #

þ 0:12 12 exp
23lhl

80

� �� �

gE0E1
ðlhlÞ ¼ 0:00½1 2 dlhl�

þ 0:19 1 2 exp
23lhl2

202

 !" #

þ 0:09 1 2 exp
23lhl

80

� �� �

where lhl denotes the norm of vector h; gE0
ðlhlÞ

denotes the semivariogram model for the e0 residuals

of intercept b0-coefficients from the regression on the

rank transform of the window averaged elevation, gE1

ðlhlÞ denotes the semivariogram model for the e1

residuals of slope b1-coefficients from the regression

on the rank transform of the product (interaction) of

specific humidity with smoothed terrain elevation, and

gE0E1
ðlhlÞ denotes the cross-semivariogram between

these two sets of residual values. All models are

comprised from three nested structures: a nugget effect

1 2 dlhl (where dlhl ¼ 1 if lhl ¼ 0; zero otherwise), a

Gaussian structure with effective range (distance at

which 95% of total sill is reached) 20 km, and an

exponential structure with effective range 80 km.

Note that the correlation coefficient rE0E1
ð0Þ

between the two residual data sets can be deduced

from the sill gE0E1
ð1Þ of the cross-semivariogram

Fig. 3. Proportion of variance, quantified by the coefficient of determination CDa; of precipitation temporal variability accounted for by local

temporal trend models at the 77 rain gauges (A), and histogram of CDa-values (B).
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model as:

rE0E1
ð0Þ ¼ gE0E1

ð1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gE0

ð1ÞgE1
ð1Þ

q
where gE0

ð1Þ denotes the semivariogram sill (var-

iance) of the e0-residuals and gE1
ð1Þ denotes the

semivariogram sill (variance) of the e1-residuals. In

this case,

rE1E2
ð0Þ ¼2ð0:19þ 0:09Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:01þ 0:56þ 0:8Þð0:01þ 0:07þ 0:12Þ
p

¼20:53;

which is equal to the sample correlation coefficient

between the two sets of e-residual values.

The maps of estimated temporal trend coefficients,

intercept bpp
0 -values and slope bpp

1 -values resulting

from Eq. (13) are shown in Fig. 4A and B. Note that

(co)kriging is an exact interpolator, which implies that

regression residual ek-values, hence temporal trend

coefficient bk-values, are reproduced at their respect-

ive rain gauge locations. Also note the negative

correlation between the estimated coefficients: high-

valued b0 intercept areas (dark-colored pixels in

Fig. 4A) generally correspond to low-valued b1 slope

areas (light-colored pixels in Fig. 4B).

Using the above estimated intercept bpp
0 ðuÞ and

slope bpp
1 ðuÞ coefficients at any grid cell u; one can

estimate the spatiotemporal trend component

mpðu; tÞ at any grid cell u and any day t using

Eq. (14). Maps of this estimated temporal trend

component for Nov 12 and 13, 1981 are shown in

Fig. 5A and B. Note the higher trend values for

Nov 13 as compared to those of Nov 12, especially

over the Santa Cruz mountains and over the south

tip of the Coastal Range.

3.3. Stochastic simulation of space–time precipitation

Stochastic simulation of daily precipitation in

space and time amounts to combining to the estimated

spatiotemporal trend component {mpðu; tÞ; u [ D;

t [ T} with a realization of the spatiotemporal

residual component {Rðu; tÞ; u [ D; t [ T} of

Eq. (2). Simulation of the spatiotemporal residual

component is performed using sequential Gaussian

simulation (see Section 2.3 for details). Stochastic

simulation in space and time calls for a spatiotemporal

semivariogram model of the Gaussian-transformed

rG-residuals. In this work, a single transformation

common to all spatial locations and all time instants is

adopted.

The (standardized to unit sill) space–time semi-

variogram model gRG
ðlhl; tÞ (not shown) adopted

for these Gaussian-transformed spatiotemporal

Fig. 4. Maps of estimated temporal trend coefficients, intercept (A) and slope (B), derived respectively by regression on elevation and its

interaction with NCEP/NCAR specific humidity, followed by simple cokriging (SCK) of the resulting residuals.
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rG-residuals is:

gRG
ðlhl;tÞ¼ 0:30½12dlhl;t�

þ0:35 12 exp 23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lhl
95

� �2

þ
t

1

� �2
s0

@
1
A

2
4

3
5

þ0:35 12 exp 23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lhl
95

� �2

þ
t

2

� �2
s0

@
1
A

2
4

3
5

ð16Þ

where dlhl;t is defined as: dlhl;t ¼ 1; if lhl ¼ t ¼ 0;

zero otherwise, and 1 denotes a very small number

that is used to force the second nested structure to

appear as a pure nugget effect in time.

For this particular set of Gaussian transformed rG-

residuals, temporal correlation is very weak, since

only 35% of the residual temporal variability is non-

random with a correlation period of two days (third

nested semivariogram component). Spatial variability

exhibits a correlation length of 95 km with a 30%

purely random variability (first nested semivariogram

structure). This implies that once the spatiotemporal

trend component is removed, the residual component

(which explains, on average, 42% of spatiotemporal

variability) exhibits significant spatial but weak

temporal autocorrelation.

Using the space–time semivariogram model of Eq.

(16) of the Gaussian-transformed rG-residual values,

sequential simulation (see Section 2.3) was used to

generate a set of S ¼ 30 alternative realizations of

daily precipitation over the 300 £ 360 grid of cell size

1 km2 for the 92 days from Nov 1, 1981 to Jan 31,

1982. Two of these realizations for Nov 12, 1981 and

two for Nov 13, 1981 are shown in Figs. 6A and B

and 7A and B. Conditioning entails that areas around

high (low) rain gauge precipitation values (see

Figs. 6C and 7C) appear also as areas of high (low)

precipitation in all simulated realizations.

It should be noted that the proposed simulation

approach does not reproduce the histogram of

precipitation measurements at any particular sub-

region or time instant. Instead, it reproduces the

histogram of all precipitation measurements (not that

of rainfall depth) over the entire study region and time

period of interest. In other words, the Gaussian

transformation and back-transformation employed in

this case study is global, i.e. considers all data in space

and time. Reproduction of time- or region-specific

precipitation histograms can be imposed by progress-

ively applying the quantile transformation procedure

described in Section 2.3 at simulation grid nodes that

lie further away from the informed locations and time

instants. Such a progressive transformation does not

ruin the data-exactitude property of conditional

Fig. 5. Maps of precipitation spatiotemporal trend component for Nov 12 (A) and Nov 13 (B) 1981.
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simulations (Journel and Xu, 1994; Deutsch and

Journel, 1998), and thus was adopted in this case

study. All subsequent figures pertain to such trans-

formed realizations.

The reproduction of the histograms of sample

precipitation recorded at the 77 rain gauges at

Nov 12 and 13, 1981, by the histograms of five

precipitation realizations for each of these days is

shown via the quantile–quantile plots of Fig. 8A

and B. A plot aligned along the first bisector implies

two nearly identical distributions. The semivario-

gram reproduction for Nov 12 and 13, 1981 is

shown in Fig. 8C and D; the sample precipitation

semivariograms are well approximated by the

semivariograms of the five precipitation realizations.

Conditionally simulated daily precipitation realiz-

ations thus provide realistic synthetic representations

of the true (unknown) precipitation field, insofar as

they reproduce the histogram and semivariogram of

observed rain gauge data.

Fig. 6. Two (out of 30) synthetic precipitation fields for Nov 12, 1981 (A and B) generated by conditional stochastic simulation, along with the

contemporaneous rain gauge data (C).
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A summary of simulated precipitation at each grid

cell is provided by the (ensemble) average and

standard deviation of the simulated values at that

cell. Maps of ensemble averages of simulated

precipitation for Nov 12 and Nov 13, 1981 are given

in Fig. 9A and B. Note the high precipitation amounts

in the Santa Cruz mountains for Nov 13, a pattern

consistent with that deduced from the contempora-

neous rain gauge data (Fig. 7C). Maps of ensemble

standard deviations of simulated precipitation for

Nov 12 and Nov 13, 1981 are given in Fig. 9C and D.

Note the increased standard deviation values for Nov

13 with respect to those observed for Nov 12, as well

as the small standard deviation values near rain

gauges, which indicate less spatial uncertainty around

these locations. Other summary maps, such as maps of

probability that precipitation exceeds a critical

threshold used, say, in flood warnings, can be also

generated from the ensemble of synthetic precipi-

tation fields. It should be noted here that the depicted

Fig. 7. Two (out of 30) synthetic precipitation fields for Nov 13, 1981 (A and B) generated by conditional stochastic simulation, along with the

contemporaneous rain gauge data (C).
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standard deviation maps account only for the

uncertainty in the cokriging predictions of the residual

component (see Eq. (11)), and thus should be regarded

as conservative measures of spatial uncertainty (see

related discussion at the end of Section 2.3).

Last, we compare the simulated precipitation

profiles at the ungauged location shown (with a

cross) in Fig. 1A, with precipitation profiles at two

nearby rain gauges #5 and #60, all located in the same

mountainous region. The choice of the ungauged

location was based on: (i) its proximity to rain gauges

with significant temporal variability in their recorded

precipitation profiles, and (ii) the fact that the Santa

Cruz mountains have a strong orographic influence on

local precipitation. Alternatively, we could have used

for comparison the precipitation profile of a rain

gauge that was not included in the sample set during

the analysis. Since our goal is not to validate the

method, but simply to illustrate a set of simulated

temporal precipitation profiles, we did not opt for this

alternative.

The set of 30 simulated profiles, and their ensemble

average, at the ungauged location is shown in

Fig. 10B. The precipitation profiles at the two nearby

Fig. 8. Reproduction of observed precipitation histogram (A) and semivariogram (B) from five precipitation realizations for Nov 12 and 13,

1981 (solid line: semivariogram of observed precipitation; dashed lines: semivariograms of simulated precipitation realizations).
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rain gauges are shown in Fig. 10A–C. One can

appreciate the similarity of the simulated precipitation

profiles to the two rain gauge profiles. Note the

common rainfall intermittence pattern exhibited by all

profiles, and the similarity of the ensemble precipi-

tation average profile (solid line of Fig. 10B) to those

of the nearby rain gauges. The average correlation

coefficient between the simulated precipitation pro-

files and the precipitation profile of rain gauge #5 is

0.73 with a standard deviation of 0.16. Similarly, that

average correlation coefficient with rain gauge #60 is

0.72 with a standard deviation of 0.16. The ensemble

average precipitation profile has correlation coeffi-

cient 0.91 with the precipitation profile at rain gauge

#5, and 0.89 with that at rain gauge #60. This latter

comparison of temporal profiles of simulated and

observed precipitation corroborates the fact that daily

precipitation realizations generated via the proposed

methodology constitute a realistic synthetic represen-

tation of the true (unknown) precipitation field.

Fig. 9. Precipitation ensemble average (A and B) and ensemble standard deviation (C and D) for Nov 12 and 13, 1981, computed from 30

synthetic precipitation fields generated via conditional stochastic simulation.
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4. Summary and discussion

A framework for stochastic spatiotemporal simu-

lation of daily precipitation in a hindcast mode has

been presented in this paper. Observed daily precipi-

tation levels are viewed as a joint realization of a

collection of spatially correlated time series, thus

capitalizing on the typically better informed time

domain. The spatiotemporal daily precipitation field is

decomposed into a deterministic trend and a stochas-

tic residual component. Parametric temporal trend

models are established at all rain gauges, indepen-

dently from one rain gauge to another, and their

parameters are (co)regionalized in space to yield an

estimate of the space–time trend component at any

location for any day. The joint spatial prediction of

such temporal trend coefficients accounts for their

covariation in space, as well as for their relation with

ancillary spatial information. Simulated realizations

of daily precipitation in space and time are obtained

by generating alternative realizations of the spatio-

temporal residual component (modeled as stationary

in space and time), and combining them with the

estimated trend component.

The case study illustrated the applicability of the

proposed approach using daily precipitation measure-

ments from 77 rain gauges in northern California

during 92 days (no missing values) from Nov 1, 1981

to Jan 31, 1982. The spatial average of the 77

precipitation profiles was used as the precipitation

predictor, in order to evaluate local departures from

this average profile at each rain gauge. The spatial

variability of the parameters (intercept and slope) of

77 local (rain gauge specific) temporal linear

regression models indicated that there are significant

departures of individual rain gauge precipitation

profiles from the average profile over the study

region. The proportion of temporal precipitation

variance at each rain gauge, quantified by the

coefficient of determination, ranged from a minimum

of 0.09 to a maximum of 0.87 with an average of 0.58;

this indicates that there are rain gauges whose

precipitation profiles differ dramatically from the

spatially averaged profile.

The temporal regression parameters were regio-

nalized (interpolated) on a 300 £ 360 grid of cell

size 1 km2 over the study region. Their spatial

interpolation accounted for the effect of ancillary

information derived from terrain elevation and

NCEP/NCAR reanalysis data of lower-atmosphere

moisture availability in the region. The contribution

of ancillary information was incorporated via spatial

regression models (yet with marginal effect, since

the respective coefficients of determination were

Fig. 10. Illustration of the variability of simulated precipitation at the ungauged location shown in Fig. 1B: 30-member ensemble of simulated

daily precipitation profiles at this location (dotted lines) and their ensemble average (thick solid line), A–C: observed precipitation profiles at

nearby rain gauges.
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0.3 and 0.4) established from collocated intercept b0

and (rank transformed) elevation values, as well as

from collocated slope b1 and (rank transformed)

specific humidity values. The residuals from these

spatial regression models were auto- and cross-

correlated in space with correlation lengths up to

80 km. Cokriging of these residual values on the

same grid as above, yielded interpolated temporal

trend model parameters, and consequently estimates

of the trend component at each grid node. The rain

gauge precipitation residuals (from the correspond-

ing temporal trend models) showed significant

spatial but weak temporal correlation. The corre-

lation of these spatiotemporal residuals was modeled

as stationary (in both space and time), with

respective correlation lengths 95 km and 2 days.

Stochastic conditional simulation was adopted for

generating 30 synthetic realizations of daily precipi-

tation on a 300 £ 360 grid of cell size 1 km2 over the

study region. Simulated precipitation realizations

reproduced the histogram and semivariogram model

of the rain gauge data. In addition, simulated

precipitation profiles compared well with observed

profiles at nearby rain gauges. The ensemble average

and standard deviation fields were also provided as a

summary of the 30 synthetic precipitation

realizations.

It should be noted, however, that ensemble average

fields do not reproduce the statistical properties

(histogram, semivariogram) of the rain gauge data;

they do reproduce rain gauge precipitation data at

their locations, but provide a smooth picture of the

spatial distribution of daily precipitation. This latter

smoothing characteristic, which also entails misre-

presentation of the sample proportion of extreme

precipitation events, could be detrimental in hydro-

logic modeling. Similarly, ensemble standard devi-

ation fields do not provide a measure of joint spatial

uncertainty regarding the unknown precipitation

value at two or more locations simultaneously.

Consequently, such fields cannot be used for deriving

a measure of uncertainty regarding predictions of

hydrological models, e.g. rainfall-runoff models, due

to uncertain input forcing; this latter goal is achieved

via Monte Carlo simulation. For a detailed discussion

regarding the problems associated with ensemble

average and standard deviation fields, the reader is

referred to Deutsch and Journel (1998).

The proposed approach could be expanded to

account for longer periods of dry days, by first

simulating a space– time realization of rainfall

occurrence and then simulating a space–time realiz-

ation of rainfall amounts. Realizations of the rainfall

amounts process would be generated only in those

grid cells at which rainfall was simulated as occurring

(wet cells). Results from this latter extension, which

enables modeling both patterns of precipitation

occurrence and amounts in space and time, will be

reported in the near future.

Another research avenue currently being explored

pertains to the incorporation of regional climate

model predictions of precipitation in the mapping

process. Preliminary results show that such regional

model predictions contribute significantly to the

elucidation of spatiotemporal patterns of precipitation

that cannot be discerned from the sparse network of

rain gauge measurements in the region. Scale

differences between such model predictions and rain

gauge measurements can be addressed using a variant

of block (co)kriging (Kyriakidis, 2004).

Synthetic conditional simulations of precipitation

generated via the proposed approach provide an initial

(yet faithful to the rain gauge measurements and their

statistics) model of uncertainty regarding unknown

daily precipitation levels in both space and time. Such

an uncertainty model can be used in a risk analysis

context to study the effect of uncertain precipitation

forcing on hydrologic impact assessment

investigations.
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